Connexins 43 and 45 hemichannels mediate ATP release in the urinary bladder

Background: Connexin (Cx) proteins form gap junctions between adjacent cells to facilitate intercellular communication and also assemble into hemichannels that release small molecules, including adenosine triphosphate (ATP), into the extracellular microenvironment, where ATP acts on purinergic receptors. Objective: This study investigated the roles of Cx43 and Cx45 as ATP release channels in the urinary bladder. Methods: Porcine bladder tissues and cultured cells were stained for Cx43 and Cx45 using immunofluorescence. Cx43- and Cx45-mediated ATP release in response to hypotonic stretch and extracellular Ca2⁺ depletion was assessed in porcine urothelial, suburothelial, and detrusor muscle cells, as well as in the human RT4 cell line. Results: The expression of Cx43 and Cx45 was Immunohistochemically confirmed in porcine bladder tissue, cultured porcine bladder urothelial cells, suburothelial myofibroblasts, detrusor muscle cells, and the human urothelial RT4 cell line. Hypotonic stretch increased ATP release in all four cell types, with porcine urothelial cells exhibiting a 3.8 ± 1.3-fold and RT4 cells a 2.0 ± 0.5-fold increase relative to control levels. Similarly, depletion of extracellular calcium ions (Ca2+) stimulated ATP release from porcine urothelial cells and RT4 cells, yielding 5.4 ± 2.9-fold and 2.4 ± 0.8-fold increases, respectively. Blockade of Cx43 channels with a Cx43 mimetic peptide (peptide 5) and Cx45 channels with a Cx45 mimetic peptide reduced ATP release induced by stretch and Ca2+ depletion in porcine urothelial cells by 50% and 67%, respectively. These blockers also reduced ATP release in RT4 cells. The contributions of Cx43 and Cx45 to ATP release were less prominent in suburothelial and detrusor muscle cells compared to urothelial cells. Conclusion: These findings highlighted ATP’s role as an autocrine/paracrine signaling molecule acting on purinergic receptors during bladder distension and suggested that Cx hemichannels regulate ATP release through mechanotransduction and Ca2+-sensitive pathways, providing new insights into bladder sensory mechanisms.
- Takezawa K, Kondo M, Nonomura N, Shimada S. Urothelial ATP signaling: What is its role in bladder sensation? Neurourol Urodyn. 2017;36(4):966-972. doi: 10.1002/nau.23099
- Ferguson DR, Kennedy I, Burton TJ. ATP is released from rabbit urinary bladder epithelial cells by hydrostatic pressure changes--a possible sensory mechanism? J Physiol. 1997;505(Pt 2):503-511. doi: 10.1111/j.1469-7793.1997.503bb.x
- Cockayne DA, Hamilton SG, Zhu QM, et al. Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3- deficient mice. Nature. 2000;407(6807):1011-1015. doi: 10.1038/35039519
- Sun Y, Chai TC. Augmented extracellular ATP signaling in bladder urothelial cells from patients with interstitial cystitis. Am J Physiol Cell Physiol. 2006;290(1):C27-C34. doi: 10.1152/ajpcell.00552.2004
- Kumar V, Chapple CR, Surprenant AM, Chess-Williams R. Enhanced adenosine triphosphate release from the urothelium of patients with painful bladder syndrome: A possible pathophysiological explanation. J Urol. 2007;178(4 Pt 1):1533-1536. doi: 10.1016/j.juro.2007.05.116
- O’Reilly BA, Kosaka AH, Knight GF, et al. P2X receptors and their role in female idiopathic detrusor instability. J Urol. 2002;167(1):157-164.
- Contreras-Sanz A, Krska L, Balachandran AA, et al. Altered urothelial ATP signaling in a major subset of human overactive bladder patients with pyuria. Am J Physiol Renal Physiol. 2016;311(4):F805-F816. doi: 10.1152/ajprenal.00339.2015
- Sui G, Fry CH, Montgomery B, Roberts M, Wu R, Wu C. Purinergic and muscarinic modulation of ATP release from the urothelium and its paracrine actions. Am J Physiol Renal Physiol. 2014;306(3):F286-F298. doi: 10.1152/ajprenal.00291.2013
- Sana-Ur-Rehman H, Markus I, Moore KH, Mansfield KJ, Liu L. Expression and localization of pannexin-1 and CALHM1 in porcine bladder and their involvement in modulating ATP release. Am J Physiol Regul Integr Comp Physiol. 2017;312:R763-R772. doi: 10.1152/ajpregu.00039.2016
- Beckel JM, Daugherty SL, Tyagi P, et al. Pannexin 1 channels mediate the release of ATP into the lumen of the rat urinary bladder. J Physiol. 2015;593(8):1857-1871. doi: 10.1113/jphysiol.2014.283119
- Birder LA, Nakamura Y, Kiss S, et al. Altered urinary bladder function in mice lacking the vanilloid receptor TRPV1. Nat Neurosci. 2002;5(9):856-860. doi: 10.1038/nn902
- Mochizuki T, Sokabe T, Araki I, et al. The TRPV4 cation channel mediates stretch-evoked Ca2+ influx and ATP release in primary urothelial cell cultures. J Biol Chem. 2009;284(32):21257-21264. doi: 10.1074/jbc.M109.020206
- Sadananda P, Shang F, Liu L, Mansfield KJ, Burcher E. Release of ATP from rat urinary bladder mucosa: Role of acid, vanilloids and stretch. Br J Pharmacol. 2009;158(7):1655-1662. doi: 10.1111/j.1476-5381.2009.00431.x
- Miyamoto T, Mochizuki T, Nakagomi H, et al. Functional role for piezo1 in stretch-evoked Ca2+ influx and ATP release in urothelial cell cultures. J Biol Chem. 2014;289(23):16565-16575. doi: 10.1074/jbc.M113.528638
- Du S, Araki I, Mikami Y, et al. Amiloride-sensitive ion channels in urinary bladder epithelium involved in mechanosensory transduction by modulating stretch-evoked adenosine triphosphate release. Urology. 2007;69(3):590-595. doi: 10.1016/j.urology.2007.01.039
- Wang EC, Lee JM, Ruiz WG, et al. ATP and purinergic receptor-dependent membrane traffic in bladder umbrella cells. J Clin Invest. 2005;115(9):2412-2422. doi: 10.1172/jci24086
- Goodenough DA, Goliger JA, Paul DL. Connexins, connexons, and intercellular communication. Annu Rev Biochem. 1996;65:475-502. doi: 10.1146/annurev.bi.65.070196.002355
- Kronengold J, Srinivas M, Verselis VK. The N-terminal half of the connexin protein contains the core elements of the pore and voltage gates. J Membr Biol. 2012;245(8):453-463. doi: 10.1007/s00232-012-9457-z
- Quist AP, Rhee SK, Lin H, Lal R. Physiological role of gap-junctional hemichannels. Extracellular calcium-dependent isosmotic volume regulation. J Cell Biol. 2000;148(5):1063-1074. doi: 10.1083/jcb.148.5.1063
- Gomes P, Srinivas SP, Van Driessche W, Vereecke J, Himpens B. ATP release through connexin hemichannels in corneal endothelial cells. Invest Ophthalmol Vis Sci. 2005;46(4):1208-1218. doi: 10.1167/iovs.04-1181
- Ohshima Y, Tsukimoto M, Harada H, Kojima S. Involvement of connexin43 hemichannel in ATP release after γ-irradiation. J Radiat Res. 2012;53(4):551-557. doi: 10.1093/jrr/rrs014
- Calder BW, Matthew Rhett J, Bainbridge H, Fann SA, Gourdie RG, Yost MJ. Inhibition of connexin 43 hemichannel-mediated ATP release attenuates early inflammation during the foreign body response. Tissue Eng Part A. 2015;21(11- 12):1752-1762. doi: 10.1089/ten.TEA.2014.0651
- Anselmi F, Hernandez VH, Crispino G, et al. ATP release through connexin hemichannels and gap junction transfer of second messengers propagate Ca2+ signals across the inner ear. Proc Natl Acad Sci U S A. 2008;105(48):18770-18775. doi: 10.1073/pnas.0800793105
- Neuhaus J, Pfeiffer F, Wolburg H, Horn LC, Dorschner W. Alterations in connexin expression in the bladder of patients with urge symptoms. BJU Int. 2005;96(4):670-676. doi: 10.1111/j.1464-410X.2005.05703.x
- Cheng Y, Mansfield KJ, Sandow SL, Sadananda P, Burcher E, Moore KH. Porcine bladder urothelial, myofibroblast, and detrusor muscle cells: Characterization and ATP release. Front Pharmacol. 2011;2:27. doi: 10.3389/fphar.2011.00027
- Denuc A, Núñez E, Calvo E, et al. New protein-protein interactions of mitochondrial connexin 43 in mouse heart. J Cell Mol Med. 2016;20(5):794-803. doi: 10.1111/jcmm.12792
- Haferkamp A, Mundhenk J, Bastian PJ, et al. Increased expression of connexin 43 in the overactive neurogenic detrusor. Eur Urol. 2004;46(6):799-805. doi: 10.1016/j.eururo.2004.08.020
- Li L, Jiang C, Hao P, Li W, Song C, Song B. Changes of gap junctional cell-cell communication in overactive detrusor in rats. Am J Physiol Cell Physiol. 2007;293(5):C1627-C1635. doi: 10.1152/ajpcell.00122.2007
- Sui GP, Rothery S, Dupont E, Fry CH, Severs NJ. Gap junctions and connexin expression in human suburothelial interstitial cells. BJU Int. 2002;90(1):118-129. doi: 10.1046/j.1464-410x.2002.02834.x
- Wang HZ, Lee SW, Day NS, Christ GJ. Gap junction channel activity in cultured human bladder smooth muscle cell pairs: Gating and unitary conductances. Urology. 2001;57(6 Suppl 1):111.
- Parsons BA, Drake MJ, Gammie A, Fry CH, Vahabi B. The validation of a functional, isolated pig bladder model for physiological experimentation. Front Pharmacol. 2012;3:52. doi: 10.3389/fphar.2012.00052
- Ikeda Y, Fry C, Hayashi F, Stolz D, Griffiths D, Kanai A. Role of gap junctions in spontaneous activity of the rat bladder. Am J Physiol Renal Physiol. 2007;293(4):F1018-F1025. doi: 10.1152/ajprenal.00183.2007
- Lohman AW, Billaud M, Isakson BE. Mechanisms of ATP release and signalling in the blood vessel wall. Cardiovasc Res. 2012;95(3):269-280. doi: 10.1093/cvr/cvs187
- Mansfield KJ, Hughes JR. P2Y receptor modulation of ATP release in the urothelium. Biomed Res Int. 2014;2014:830374. doi: 10.1155/2014/830374
- Janssen DA, Schalken JA, Heesakkers JP. Urothelium update: How the bladder mucosa measures bladder filling. Acta Physiol (Oxf). 2016;220:201-217. doi: 10.1111/apha.12824
- John H, Wang X, Wehrli E, Hauri D, Maake C. Evidence of gap junctions in the stable nonobstructed human bladder. J Urol. 2003;169(2):745-749. doi: 10.1097/01.ju.0000045140.86986.a7
- Grek CL, Prasad GM, Viswanathan V, Armstrong DG, Gourdie RG, Ghatnekar GS. Topical administration of a connexin43-based peptide augments healing of chronic neuropathic diabetic foot ulcers: A multicenter, randomized trial. Wound Repair Regen. 2015;23(2):203-212. doi: 10.1111/wrr.12275