POL Scientific / JBM / Volume 12 / Issue 3 / DOI: 10.14440/jbm2025.0016
RESEARCH ARTICLE

Variations in the fetal bovine serum and glucose concentration in the culture medium impact the viability of glioblastoma cells as evidenced through the modulation of cell cycle and reactive oxygen species: An in vitro study

Rimshia Naaz1,2 Mahadevaswamy G. Kuruburu1 Zonunsiami Leihang1 Venugopal R. Bovilla1 Rajalakshmi Rajashetty2 Ramya C. Madhusetty2 Vijaya Y. Vaagesh2 SubbaRao V. Madhunapantula1,3*
Show Less
1 Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, Faculty of Medicine, JSS Academy of Higher Education and Research, Mysuru, Karnataka 570015, India
2 Department of Physiology, JSS Medical College, Faculty of Medicine, JSS Academy of Higher Education and Research, Mysuru, Karnataka 570015, India
3 Special Interest Group in Cancer Biology and Cancer Stem Cells, JSS Medical College, Faculty of Medicine, JSS Academy of Higher Education and Research, Mysuru, Karnataka 570015, India
JBM 2025 , 12(3), e99010071; https://doi.org/10.14440/jbm2025.0016
Submitted: 13 February 2025 | Revised: 14 May 2025 | Accepted: 10 July 2025 | Published: 28 August 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Background: In vitro cell culture is essential for elucidating various signaling mechanisms and screening pharmacological agents to assess their safety and efficacy. However, cell proliferation and survival in culture can be significantly influenced by variations in the composition of the culture medium. For instance, variations in glucose and fetal bovine serum (FBS) concentrations can impact cell viability. Despite this, only a few studies have examined the impact of varied FBS and glucose concentrations in culture media on cell viability. Objective: This study investigated the mechanisms and cellular effects of glucose and FBS deprivation in glioblastoma cell lines. Methods: We systematically evaluated the impact of FBS and glucose deprivation on the proliferation and survival of rat C6 and human U-87 MG glioblastoma cell lines. Results: Glucose deprivation (0 mg/dL) significantly reduced the viability of C6 cells and moderately lowered the viability of U-87 MG cells, with partial recovery upon glucose supplementation (100 mg/dL, 400 mg/dL). Notably, FBS deprivation (0%) exerted a more profound effect, inducing the accumulation of reactive oxygen species and extensive cell death in both cell lines. Restoration of FBS (1, 2, 4, 6, 8, and 10%) recovered cell viability and reduced oxidative stress. Furthermore, both glucose and FBS deprivation altered antioxidant enzyme expression and mitochondrial function. Glucose and FBS deprivation also differentially affected protein kinase B phosphorylation, suggesting metabolic stress-induced signaling modulation. Conclusion: These findings highlight the differential responses of glioblastoma cells to glucose and FBS deprivation and underscore the importance of standardizing culture conditions, especially serum and glucose levels, when designing experiments involving glioblastoma cells.

Keywords
Fetal bovine serum
Glucose
Reactive oxygen species
Rat glioblastoma cell line
C6 cell line
Human glioblastoma cell line
U-87 MG cell line
Funding
This study was funded by a Senior Research Fellowship (SRF) from the Indian Council of Medical Research (ICMR) - Grant no: 3/1/2/161/Neuro/2021-NCD-I; DST-Cognitive Science Research Initiative (DST-CSRI) - Grant no: SR/CSRI/44/2016(G).
References
  1. Pampori ZA, Sheikh AA, Shah F. In-vitro cell culture: A promising technology in the advancement of science and research as a solution to human and animal health issues. Indian J Anim Res. 2024;58(12):2007-2017. doi: 10.18805/IJAR.B-5325

 

  1. Yao T, Asayama Y. Animal‐cell culture media: History, characteristics, and current issues. Reprod Med Biol. 2017;16(2):99-117. doi: 10.1002/rmb2.12024

 

  1. Liu S, Yang W, Li Y, Sun C. Fetal bovine serum, an important factor affecting the reproducibility of cell experiments. Sci Rep. 2023;13(1):1942. doi: 10.1038/s41598-023-29060-7

 

  1. Chelladurai KS, Christyraj JDS, Rajagopalan K, et al. Alternative to FBS in animal cell culture-An overview and future perspective. Heliyon. 2021;7(8):e07686. doi: 10.1016/j.heliyon.2021.e07686

 

  1. Lee DY, Lee SY, Yun SH, et al. Review of the current research on fetal bovine serum and the development of cultured meat. Food Sci Anim Resour. 2022;42(5):775. doi: 10.5851/kosfa.2022.e46

 

  1. Psychogios N, Hau DD, Peng J, et al. The human serum metabolome. PLos One. 2011;6(2):e16957. doi: 10.1371/journal.pone.0016957

 

  1. Abramowicz A, Marczak L, Wojakowska A, et al. Harmonization of exosome isolation from culture supernatants for optimized proteomics analysis. PLos One. 2018;13(10):e0205496. doi: 10.1371/journal.pone.0205496

 

  1. Tong J, Sun D, Yang C, et al. Serum starvation and thymidine double blocking achieved efficient cell cycle synchronization and altered the expression of p27, p53, bcl-2 in canine breast cancer cells. Res Vet Sci. 2016;105:10-14. doi: 10.1016/j.rvsc.2016.01.008

 

  1. Ni P, Xu H, Chen C, et al. Serum starvation induces DRAM expression in liver cancer cells via histone modifications within its promoter locus. PLos One. 2012;7(12):e50502. doi: 10.1371/journal.pone.0050502

 

  1. White ESZ, Pennant NM, Carter JR, Hawsawi O, Odero- Marah V, Hinton CV. Serum deprivation initiates adaptation and survival to oxidative stress in prostate cancer cells. Sci Rep. 2020;10(1):12505. doi: 10.1038/s41598-020-68668-x

 

  1. Hossler P, Racicot C, Chumsae C, McDermott S, Cochran K. Cell culture media supplementation of infrequently used sugars for the targeted shifting of protein glycosylation profiles. Biotechnol Prog. 2017;33(2):511-522. doi: 10.1002/btpr.2429

 

  1. Koobotse MO, Schmidt D, Holly JM, Perks CM. Glucose concentration in cell culture medium influences the BRCA1- mediated regulation of the lipogenic action of IGF-I in breast cancer cells. Int J Mol Sci. 2020;21(22):8674. doi: 10.3390/ijms21228674

 

  1. Liu Y, Cao Y, Zhang W, et al. A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell-cycle arrest, and inhibits cancer cell growth in vitro and in vivo. Mol Cancer Ther. 2012;11(8):1672-1682. doi: 10.1158/1535-7163.MCT-12-0131

 

  1. Ferretti AC, Tonucci FM, Hidalgo F, Almada E, Larocca MC, Favre C. AMPK and PKA interaction in the regulation of survival of liver cancer cells subjected to glucose starvation. Oncotarget. 2016;7(14):17815. doi: 10.18632/oncotarget.7404

 

  1. Huang C, Sheng S, Li R, Sun X, Liu J, Huang G. Lactate promotes resistance to glucose starvation via upregulation of Bcl-2 mediated by mTOR activation. Oncol Rep. 2015;33(2):875-884. doi: 10.3892/or.2014.3655

 

  1. Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab. 2016;23(1):27-47. doi: 10.1016/j.cmet.2015.12.006

 

  1. Wyld L, Tomlinson M, Reed MWR, Brown NJ. Aminolaevulinic acid-induced photodynamic therapy: Cellular responses to glucose starvation. Br J Cancer. 2002;86(8):1343-1347. doi: 10.1038/sj.bjc.6600234

 

  1. Skehan P, Storeng R, Scudiero D, et al. New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst. 1990;82(13):1107-1112. doi: 10.1093/jnci/82.13.1107

 

  1. Shailasree S, Kini KR, Deepak S, Kumudini B, Shetty HS. Accumulation of hydroxyproline-rich glycoproteins in pearl millet seedlings in response to Sclerospora graminicola infection. Plant Sci. 2004;167(6):1227-1234. doi: 10.1016/j.plantsci.2004.06.1

 

  1. Prochaska HJ, Santamaria AB. Direct measurement of NAD (P) H: Quinone reductase from cells cultured in microtiter wells: A screening assay for anticarcinogenic enzyme inducers. Anal Biochem. 1988;169(2):328-336. doi: 10.1016/0003-2697(88)90292-8

 

  1. Bovilla VR, Kuruburu MG, Bettada VG, et al. Targeted inhibition of anti-inflammatory regulator Nrf2 results in breast cancer retardation in vitro and in vivo. Biomedicines. 2021;9(9):1119. doi: 10.3390/biomedicines9091119

 

  1. Chikkegowda P, Pookunoth BC, Bovilla VR, et al. Design, synthesis, characterization, and crystal structure studies of Nrf2 modulators for inhibiting cancer cell growth in vitro and in vivo. ACS Omega. 2021;6(15):10054-10071. doi: 10.1021/acsomega.0c06345

 

  1. Rahman I, Kode A, Biswas SK. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat Protoc. 2006;1(6):3159-3165. doi: 10.1038/nprot.2006.378

 

  1. Gowda R, Madhunapantula SV, Kuzu OF, Sharma A, Robertson GP. Targeting multiple key signaling pathways in melanoma using leelamine. Mol Cancer Ther. 2014;13(7):1679-1689. doi: 10.1158/1535-7163.MCT-13-0867

 

  1. Mahmood T, Yang PC. Western blot: Technique, theory, and trouble shooting. N Am J Med Sci. 2012;4(9):429-434. doi: 10.4103/1947-2714.100998

 

  1. Andrés Juan C, Pérez de Lastra JM, Plou Gasca FJ, Pérez- Lebeña E. The chemistry of reactive oxygen species (ROS) revisited: Outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. Int J Mol Sci. 2021;22:4642. doi: 10.3390/ijms22094642

 

  1. Chen M, Huang J, Yang X, et al. Serum starvation induced cell cycle synchronization facilitates human somatic cells reprogramming. PLos One. 2012;7(4):e28203. doi: 10.1371/journal.pone.0028203

 

  1. Tao Z, Cheng Z. Hormonal regulation of metabolism-recent lessons learned from insulin and estrogen. Clin Sci (Lond). 2023;137(6):415-434. doi: 10.1042/CS20210519

 

  1. Miao R, Fang X, Wei J, Wu H, Wang X, Tian J. Akt: A potential drug target for metabolic syndrome. Front Physiol. 2022;13:822333. doi: 10.3389/fphys.2022.822333

 

  1. Volpe CMO, Villar-Delfino PH, Dos Anjos PMF, Nogueira- Machado JA. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis. 2018;9(2):119. doi: 10.1038/s41419-017-0135-z

 

  1. Segeritz CP, Vallier L. Cell culture: Growing cells as model systems in vitro. In: Basic Science Methods Clin Res. 2017;9:151-172. doi: 10.1016/B978-0-12-803077-6.00009-6

 

  1. Gyamfi D, Danquah KO. Nutrients and liver metabolism. In: Molecular Aspects of Alcohol and Nutrition. United States: Academic Press; 2016. p. 3-15. doi: 10.1016/B978-0-12-800773-0.00001-X

 

  1. Graham NA, Tahmasian M, Kohli B, et al. Glucose deprivation activates a metabolic and signaling amplification loop leading to cell death. Mol Syst Biol. 2012;8(1):589. doi: 10.1038/msb.2012.20

 

  1. Khajah MA, Khushaish S, Luqmani YA. Glucose deprivation reduces proliferation and motility, and enhances the anti-proliferative effects of paclitaxel and doxorubicin in breast cell lines in vitro. PLos One. 2022;17(8):e0272449. doi: 10.1371/journal.pone.0272449

 

  1. Chiodi I, Picco G, Martino C, Mondello C. Cellular response to glutamine and/or glucose deprivation in in vitro transformed human fibroblasts. Oncol Rep. 2019;41(6):3555-3564. doi: 10.3892/or.2019.7125

 

  1. Gao M, Liang J, Lu Y, et al. Site-specific activation of AKT protects cells from death induced by glucose deprivation. Oncogene. 2014;33(6):745-755. doi: 10.1038/onc.2013.2

 

  1. Gazitt Y. Early decrease of 2‐deoxy glucose and α‐amino isobutyric acid transport are among the first events in differentiating synchronized murine erythroleukemia cells. J Cell Physiol. 1979;99(3):407-416. doi: 10.1002/jcp.1040990315

 

  1. Han J, Zhang L, Guo H, et al. Glucose promotes cell proliferation, glucose uptake and invasion in endometrial cancer cells via AMPK/mTOR/S6 and MAPK signaling. Gynecol Oncol. 2015;138(3):668-675. doi: 10.1016/j.ygyno.2015.06.036

 

  1. Tomida A, Suzuki H, Kim HD, Tsuruo T. Glucose-regulated stresses cause decreased expression of cyclin D1 and hypophosphorylation of retinoblastoma protein in human cancer cells. Oncogene. 1996;13(12):2699-2705.

 

  1. Rashid MU, Coombs KM. Serum‐reduced media impacts on cell viability and protein expression in human lung epithelial cells. J Cell Physiol. 2019;234(6):7718-7724. doi: 10.1002/jcp.27890

 

  1. Mengual Gómez DL, Belaich MN, Rodríguez VA, Ghiringhelli PD. Effects of fetal bovine serum deprivation in cell cultures on the production of Anticarsia gemmatalis multinucleopolyhedrovirus. BMC Biotechnol. 2010;10:68. doi: 10.1186/1472-6750-10-68

 

  1. Lee SB, Kim JJ, Kim TW, Kim BS, Lee MS, Yoo YD. Serum deprivation-induced reactive oxygen species production is mediated by Romo1. Apoptosis. 2010;15:204-218. doi: 10.1007/s10495-009-0411-1

 

  1. Boland B, Yu WH, Corti O, et al. Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing. Nat Rev Drug Discov. 2018;17(9):660-688. doi: 10.1038/nrd.2018.109

 

  1. Jaara HS, Torres S. Mitochondrial ROS, a trigger for mitochondrial dysfunction and inflammasome activation and a therapeutic target in liver diseases. Explor Dig Dis. 2024;3:474-503. doi: 10.37349%2Fedd.2024.00062

 

  1. Lebiedzinska-Arciszewska M, Suski J, Bonora M, et al. The relation between mitochondrial membrane potential and reactive oxygen species formation. Methods Mol Biol. 2025;2878:133-162. doi: 10.1007/978-1-0716-4264-1_8

 

  1. Song G, Ouyang G, Bao S. The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med. 2005;9(1):59-71. doi: 10.1111/j.1582-4934.2005.tb00337.x

 

  1. Errafiy R, Aguado C, Ghislat G, et al. PTEN increases autophagy and inhibits the ubiquitin-proteasome pathway in glioma cells independently of its lipid phosphatase activity. PLos One. 2013;8(12):e83318. doi: 10.1371/journal.pone.0083318

 

  1. Kulkarni GV, McCulloch CA. Serum deprivation induces apoptotic cell death in a subset of Balb/c 3T3 fibroblasts. J Cell Sci. 1994;107(5):1169-1179. doi: 10.1242/jcs.107.5.1169

 

  1. Oh SJ, Yang JI, Kim O, et al. Human U87 glioblastoma cells with stemness features display enhanced sensitivity to natural killer cell cytotoxicity through altered expression of NKG2D ligand. Cancer Cell Int. 2017;17:22. doi: 10.1186/s12935-017-0397-7

 

  1. Maier Gaelzer M, Silva dos Santos M, Paranhos Coelho B, et al. Hypoxic and reoxygenated microenvironment: Stemness and differentiation state in glioblastoma. Mol Neurobiol. 2017;54(8):6261-6272. doi: 10.1007/s12035-016-0126-6
Conflict of interest
The authors declare no conflicts of interest.
Share
Back to top
Journal of Biological Methods, Electronic ISSN: 2326-9901 Print ISSN: TBA, Published by POL Scientific