A streamlined CRISPR/Cas9 approach for fast genome editing in Toxoplasma gondii and Besnoitia besnoiti

[1] C. A. Hunter and L. D. Sibley, “Modulation of innate immunity by Toxoplasma gondii virulence effectors,” Nat. Rev. Microbiol., vol. 10, no. 11, pp. 766–778, 2012, doi: 10.1038/nrmicro2858.
[2] G. Álvarez-García, C. F. Frey, L. M. O. Mora, and G. Schares, “A century of bovine besnoitiosis: an unknown disease re-emerging in Europe,” Trends Parasitol., vol. 29, no. 8, pp. 407–415, 2013, doi: https://doi.org/10.1016/j.pt.2013.06.002.
[3] F. Jiang and J. A. Doudna, “CRISPR-Cas9 Structures and Mechanisms,” Annu Rev Biophys, vol. 46, pp. 505–529, 2017, doi: 10.1146/annurev-biophys-062215-010822.
[4] M. Jinek, K. Chylinski, I. Fonfara, M. Hauer, J. A. Doudna, and E. Charpentier, “A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity,” Science (80-. )., vol. 337, no. 6096, pp. 816–821, 2012, doi: 10.1126/science.1225829.
[5] C. Anders, O. Niewoehner, A. Duerst, and M. Jinek, “Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease,” Nature, vol. 513, no. 7519, pp. 569–573, 2014, doi: 10.1038/nature13579.
[6] B. A. Fox, J. G. Ristuccia, J. P. Gigley, and D. J. Bzik, “Efficient gene replacements in Toxoplasma gondii strains deficient for nonhomologous end joining,” Eukaryot. Cell, vol. 8, no. 4, pp. 520–529, Apr. 2009, doi: 10.1128/EC.00357-08.
[7] B. Shen, K. Brown, S. Long, and L. D. Sibley, “Development of CRISPR/Cas9 for Efficient Genome Editing in Toxoplasma gondii,” in Methods Mol Biol, 2016/10/07., vol. 1498, A. Reeves, Ed. New York, NY: Springer New York, 2017, pp. 79–103.
[8] R. G. Donald and D. S. Roos, “Stable molecular transformation of Toxoplasma gondii: a selectable dihydrofolate reductase-thymidylate synthase marker based on drug-resistance mutations in malaria.,” Proc. Natl. Acad. Sci. U. S. A., vol. 90, no. 24, pp. 11703–11707, Dec. 1993, doi: 10.1073/pnas.90.24.11703.
[9] A. Hendel et al., “Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells,” Nat. Biotechnol., vol. 33, no. 9, pp. 985–989, 2015, doi: 10.1038/nbt.3290.
[10] S. Kim, D. Kim, S. W. Cho, J. Kim, and J. S. Kim, “Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins,” Genome Res., vol. 24, no. 6, pp. 1012–1019, 2014, doi: 10.1101/gr.171322.113.
[11] D. A. Braasch et al., “RNA Interference in Mammalian Cells by Chemically-Modified RNA †,” Biochemistry, vol. 42, no. 26, pp. 7967–7975, 2003, doi: 10.1021/bi0343774.
[12] R. S. Geary, D. Norris, R. Yu, and C. F. Bennett, “Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides,” Adv. Drug Deliv. Rev., vol. 87, pp. 46–51, 2015, doi: https://doi.org/10.1016/j.addr.2015.01.008.
[13] B. P. Monia, J. F. Johnston, H. Sasmor, and L. L. Cummins, “Nuclease resistance and antisense activity of modified oligonucleotides targeted to Ha-ras,” J Biol Chem, vol. 271, no. 24, pp. 14533–14540, 1996, doi: 10.1074/jbc.271.24.14533.
[14] D. E. Ryan et al., “Improving CRISPR-Cas specificity with chemical modifications in single-guide RNAs,” Nucleic Acids Res, vol. 46, no. 2, pp. 792–803, 2018, doi: 10.1093/nar/gkx1199.
[15] M. Rahdar, M. A. McMahon, T. P. Prakash, E. E. Swayze, C. F. Bennett, and D. W. Cleveland, “Synthetic CRISPR RNA-Cas9–guided genome editing in human cells,” Proc. Natl. Acad. Sci., vol. 112, no. 51, pp. E7110–E7117, 2015, doi: 10.1073/pnas.1520883112.
[16] A. Mir et al., “Heavily and fully modified RNAs guide efficient SpyCas9-mediated genome editing,” Nat. Commun., vol. 9, no. 1, p. 2641, 2018, doi: 10.1038/s41467-018-05073-z.
[17] E. K. Brinkman, T. Chen, M. Amendola, and Bas, “Easy quantitative assessment of genome editing by sequence trace decomposition,” Nucleic Acids Res., vol. 42, no. 22, pp. e168–e168, 2014, doi: 10.1093/nar/gku936.
[18] J. G. Doench et al., “Rational design of highly active sgRNAs for CRISPR-Cas9–mediated gene inactivation,” Nat. Biotechnol., vol. 32, no. 12, pp. 1262–1267, 2014, doi: 10.1038/nbt.3026.
[19] E. Kouranova et al., “CRISPRs for Optimal Targeting: Delivery of CRISPR Components as DNA, RNA, and Protein into Cultured Cells and Single-Cell Embryos,” Hum. Gene Ther., vol. 27, no. 6, pp. 464–475, Jun. 2016, doi: 10.1089/hum.2016.009.
[20] A. Seki and S. Rutz, “Optimized RNP transfection for highly efficient CRISPR/Cas9-mediated gene knockout in primary T cells,” J. Exp. Med., vol. 215, no. 3, pp. 985–997, 2018, doi: 10.1084/jem.20171626.