AccScience Publishing / JBM / Online First / DOI: 10.14440/jbm.0239
REVIEW

Nanogels as next-generation drug delivery systems: Design, advances, and biomedical applications

Bishal Sarkar1* Saumendu Deb Roy1 Dibyendu Shil1
Show Less
1 Department of Pharmaceutical Sciences, Mata Gujri College of Pharmacy, Kishanganj, Bihar 855107, India
Submitted: 6 August 2025 | Revised: 1 October 2025 | Accepted: 15 October 2025 | Published: 17 November 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Background: Nanogels are next-generation smart and stimuli-responsive nanocarriers for drug delivery, characterized by high water capacity, excellent biocompatibility, tunable size, and environmental responsiveness. Their nanoscale cross-linked polymer networks enable the delivery and encapsulation of diverse therapeutic agents, such as small molecules, proteins, nucleic acids, and imaging agents. Emerging strategies have facilitated the synthesis of stimuli-responsive nanogels (e.g., redox-, pH-, temperature-, enzyme-responsive), multifunctional hybrid systems, and targeted drug delivery platforms tailored to disease-specific microenvironments. These nanogels have demonstrated promising applications in oncology, infectious diseases, ocular therapy, central nervous system targeting, gene therapy, and vaccine delivery. The integration of machine learning and artificial intelligence has further enabled predictive optimization and formulation. In addition, new approach methodologies, such as organ-on-a-chip and in silico models, provide human-relevant, ethical, and cost-effective approaches for evaluating safety, pharmacokinetics, and therapeutic efficacy. Although challenges related to scale-up, reproducibility, and regulatory approval remain, a number of nanogel-based products are advancing toward clinical application. Objective: This review explores the composition, functionalization, biomedical applications, and future prospects of nanogels, emphasizing their potential to enable precision medicine and drug discovery. Conclusion: Nanogels are promising platforms for precision and personalized medicine, offering routes for controlled, targeted, and intelligent drug delivery that can revolutionize future therapeutic strategies.

Keywords
Nanogels
Drug delivery systems
Stimuli-responsive polymers
New approach methodologies
Precision medicine
Funding
None.
Conflict of interest
The authors declare that there is no conflict of interest.
References
  1. Seah BC, Teo BM. Recent advances in ultrasound-based transdermal drug delivery. Int J Nanomedicine. 2018;13(1):7749-7763. doi: 10.2147/IJN.S174759

 

  1. Wang J, Wang X, Yan G, Fu S, Tang R. pH-sensitive nanogels with ortho ester linkages prepared via thiol-ene click chemistry for efficient intracellular drug release. J Colloid Interface Sci. 2017;508(1):282-290. doi: 10.1016/j.jcis.2017.08.051

 

  1. Hashimoto Y, Mukai S, Sawada S, Sasaki Y, Akiyoshi K. Advanced artificial extracellular matrices using amphiphilic nanogel crosslinked thin films to anchor adhesion proteins and cytokines. ACS Biomater Sci Eng. 2016;2(3):375-384. doi: 10.1021/acsbiomaterials.5b00485

 

  1. Yin B, Deng W, Xu K, Huang L, Yao P. Stable nano-sized emulsions produced from soy protein and soy polysaccharide complexes. J Colloid Interface Sci. 2012;380(1):51-59. doi: 10.1016/j.jcis.2012.04.075

 

  1. Nandgude TD, Parakhe PS, Patole VC. Solid lipid nanoparticle-based gel to enhance topical delivery for acne treatment. Int J Drug Deliv Technol. 2023;13(2):474-482. doi: 10.25258/ijddt.13.2.04

 

  1. Chacko RT, Ventura J, Zhuang J, Thayumanavan S. Polymer nanogels: A versatile nanoscopic drug delivery platform. Adv Drug Deliv Rev. 2012;64(9):836-851. doi: 10.1016/j.addr.2012.02.002

 

  1. Ischakov R, Adler-Abramovich L, Buzhansky L, Shekhter T, Gazit E. Peptide-based hydrogel nanoparticles as effective drug delivery agents. Bioorg Med Chem. 2013;21(12): 3517-3522. doi: 10.1016/j.bmc.2013.03.012

 

  1. Maya S, Bruno S, Amrita N, Rejinold NS, Shantikumar VN, Jayakumar R. Smart stimuli sensitive nanogels in cancer drug delivery and imaging: A review. Curr Pharm Des. 2013;19(41):7203-7218. doi: 10.2174/138161281941131219124142

 

  1. Sarika PR, Anil Kumar PR, Raj DK, James NR. Nanogels based on alginic aldehyde and gelatin by inverse miniemulsion technique: Synthesis and characterization. Carbohydr Polym. 2015;119(1):118-125. doi: 10.1016/j.carbpol.2014.11.037

 

  1. Sultana F, Manirujjaman M, Imran MUH, Arafat M, Sharmin S. An overview of nanogel drug delivery system. J Appl Pharm Sci. 2013;3(1 Suppl):S95-S105. doi: 10.7324/JAPS.2013.38.S15

 

  1. Sasaki Y, Yamane S, Kurosu K, Sawada SI, Akiyoshi K. Templated formation of hydroxyapatite nanoparticles from self-assembled nanogels containing tricarboxylate groups. Polymers (Basel). 2012;4(2):1056-1064. doi: 10.3390/polym4021056

 

  1. Cheng R, Meng F, Deng C, Klok HA, Zhong Z. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials. 2013;34(14): 3647-3657. doi: 10.1016/j.biomaterials.2013.01.084

 

  1. Cortez-Lemus NA, Licea-Claverie A. Poly(N-vinylcaprolactam), a comprehensive review on a thermoresponsive polymer becoming popular. Prog Polym Sci. 2016;53(1):1-51. doi: 10.1016/j.progpolymsci.2015.11.001

 

  1. Du J, Tang Y, Lewis AL, Armes SP. pH-sensitive vesicles based on a biocompatible zwitterionic diblock copolymer. J Am Chem Soc. 2005;127(50):17982-17983. doi: 10.1021/ja056514l

 

  1. Morimoto N, Hirano S, Takahashi H, Loethen S, Thompson DH, Akiyoshi K. Self-assembled pH-sensitive cholesteryl pullulan nanogel as a protein delivery vehicle. Biomacromolecules. 2013;14(1):56-63. doi: 10.1021/bm301286h

 

  1. Alhaique F, Casadei MA, Cencetti C, et al. From macro to nano polysaccharide hydrogels: An opportunity for the delivery of drugs. J Drug Deliv Sci Technol. 2016;32(1):88-99. doi: 10.1016/j.jddst.2015.09.018

 

  1. Gazi AS, Krishnasailaja A. Preparation and evaluation of paracetamol solid lipid nanoparticles by hot homogenization method. J Nanomed Res. 2018;7(2):152-154. doi: 10.15406/jnmr.2018.07.00184

 

  1. Purwada A, Tian YF, Huang W, et al. Self-assembly protein nanogels for safer cancer immunotherapy. Adv Healthc Mater. 2016;5(12):1413-1419. doi: 10.1002/adhm.201501062

 

  1. He J, Tong X, Zhao Y. Photoresponsive nanogels based on photocontrollable cross-links. Macromolecules. 2009;42(13):4845-4852. doi: 10.1021/ma900665v

 

  1. Fan CH, Lin CY, Liu HL, Yeh CK. Ultrasound-targeted CNS gene delivery for Parkinson’s disease treatment. J Control Release. 2017;261(1):246-262. doi: 10.1016/j.jconrel.2017.07.004

 

  1. Hild WA, Breunig M, Göpferich A. Quantum dots: Nano-sized probes for the exploration of cellular and intracellular targeting. Eur J Pharm Biopharm. 2008;68(2):153-168. doi: 10.1016/j.ejpb.2007.06.009

 

  1. Argentiere S, Blasi L, Morello G, Gigli G. A novel pH-responsive nanogel for the controlled uptake and release of hydrophobic and cationic solutes. J Phys Chem C. 2011;115(33):16347-16353. doi: 10.1021/jp204954a

 

  1. Myrick JM, Vendra VK, Krishnan S. Self-assembled polysaccharide nanostructures for controlled release applications. Nanotechnol Rev. 2014;3(4):319-346. doi: 10.1515/ntrev-2012-0050

 

  1. Kunjachan S, Jose S, Lammers T. Understanding the mechanism of ionic gelation for synthesis of chitosan nanoparticles using qualitative techniques. Asian J Pharm. 2010;4(3):148-153.

 

  1. Pujana MA, Pérez Álvarez L, Cesteros Iturbe LC, Katime I. Biodegradable chitosan nanogels crosslinked with genipin. Carbohydr Polym. 2013;94(2):836-842. doi: 10.1016/j.carbpol.2013.01.082

 

  1. Kettel MJ, Hildebrandt H, Schäfer K, Moeller M, Groll J. Tenside-free preparation of nanogels with high functional β-cyclodextrin content. ACS Nano. 2012;6(9):8087-8093. doi: 10.1021/nn302694q

 

  1. Sanson N, Rieger J. Synthesis of nanogels/microgels by conventional and controlled radical crosslinking copolymerization. Polym Chem. 2010;1(7):965-977. doi: 10.1039/c0py00010h

 

  1. Li D, van Nostrum CF, Mastrobattista E, Vermonden T, Hennink WE. Nanogels for intracellular delivery of biotherapeutics. J Control Release. 2017;259(1):16-28. doi: 10.1016/j.jconrel.2016.12.020

 

  1. Sharma H, Mutharasan R. Review of biosensors for foodborne pathogens and toxins. Sens Actuators B Chem. 2013;183(1):535-549. doi: 10.1016/j.snb.2013.03.137

 

  1. Agrawal G, Agrawal R. Functional microgels: Recent advances in their biomedical applications. Small. 2018;14(32):e1801724. doi: 10.1002/smll.201801724

 

  1. Sindhu RK, Gupta R, Wadhera G, Kumar P. Modern herbal nanogels: Formulation, delivery methods, and applications. Gels. 2022;8(3):97. doi: 10.3390/gels8020097

 

  1. Vinogradov SV, Bronich TK, Kabanov AV. Nanosized cationic hydrogels for drug delivery: Preparation, properties and interactions with cells. Adv Drug Deliv Rev. 2002;54(1): 135-147. doi: 10.1016/s0169-409x(01)00245-9

 

  1. Ramos J, Forcada J, Hidalgo-Álvarez R. Cationic polymer nanoparticles and nanogels: From synthesis to biotechnological applications. Chem Rev. 2013;113(9):3949-3985. doi: 10.1021/cr3002643

 

  1. Karg M, Pich A, Hellweg T, et al. Nanogels and microgels: from model colloids to applications, recent developments, and future trends. Langmuir. 2019;35(19):6231-6255. doi: 10.1021/acs.langmuir.8b04304

 

  1. Reeves A, Vinogradov SV, Morrissey P, Chernin M, Ahmed MM. Curcumin-encapsulating nanogels as an effective anticancer formulation for intracellular uptake. Mol Cell Pharmacol. 2015;7(3):25-40. doi: 10.4255/mcpharmacol.15.04

 

  1. Pelton RH, Chibante P. Preparation of aqueous latices with N-isopropylacrylamide. Colloids Surf. 1986;20(3):247-256. doi: 10.1016/0166-6622(86)80274-8

 

  1. Vashist A, Kaushik A, Vashist A, et al. Nanogels as potential drug nanocarriers for CNS drug delivery. Drug Discov Today. 2018;23(7):1436-1443. doi: 10.1016/j.drudis.2018.05.018

 

  1. Chopade S, Khabade S, Patil A, Powar S. Formulation development and evaluation of anti-inflammatory potential of topical tenoxicam nanogel on animal model. Int J Recent Sci Res. 2018;9(12C):29951-29957. doi: 10.24327/ijrsr.2018.0912.3012

 

  1. Mohamed JM, Alqahtani A, Kumar TV, et al. Superfast synthesis of stabilized silver nanoparticles using aqueous Allium sativum (garlic) extract and isoniazid hydrazide conjugates: Molecular docking and in vitro characterizations. Molecules. 2021;27(1):110. doi: 10.3390/molecules27010110

 

  1. Baker WO. Microgel, a new macromolecule. Ind Eng Chem. 1949;41(3):511-520.

 

  1. Nagalakshmi S, Tejas DS, Yamini M, et al. Fabrication and characterization of tolnaftate-loaded topical nanoemulgel for the treatment of onychomycosis. Int J Drug Deliv Technol. 2023;13(2):461-467. doi: 10.25258/ijddt.13.2.02

 

  1. Oh JK, Lee DI, Park JM. Biopolymer-based microgels/ nanogels for drug delivery applications. Prog Polym Sci. 2009;34(12):1261-1282. doi: 10.1016/j.progpolymsci.2009.08.001

 

  1. Chouhan C, Rajput RP, Sahu R, Verma P, Sahu S. An updated review on nanoparticle-based approach for nanogel drug delivery system. J Drug Deliv Ther. 2020;10(5s):254-266. doi: 10.22270/jddt.v10i5-s.4465

 

  1. Singh S, Sonia, Sindhu RK, et al. Formulation development and investigations on therapeutic potential of nanogel from Beta vulgaris L. extract in testosterone-induced alopecia. Biomed Res Int. 2023;2023:1777631. doi: 10.1155/2023/1777631

 

  1. Durán Lobato M, Carrillo Conde B, Khairandish Y, Peppas NA. Surface-modified P(HEMA-co-MAA) nanogel carriers for oral vaccine delivery: Design, characterization, and in vitro targeting evaluation. Biomacromolecules. 2014;15(7):2725-2734. doi: 10.1021/bm500588x

 

  1. Wu X, Pelton RH, Hamielec AE, Woods DR, McPhee W. The kinetics of poly(N-isopropylacrylamide) microgel latex formation. Colloid Polym Sci. 1994;272:467-477. doi: 10.1007/BF00659460

 

  1. Saunders BR, Vincent B. Microgel particles as model colloids: Theory, properties, and applications. Adv Colloid Interface Sci. 1999;80:1-25. doi: 10.1016/S0001-8686(98)00071-2

 

  1. Li Y, Maciel D, Rodrigues J, Shi X, Tomás H. Biodegradable polymer nanogels for drug/nucleic acid delivery. Chem Rev. 2015;115:8564-8608. doi: 10.1021/cr500131f

 

  1. Senff H, Richtering W. Temperature-sensitive microgel suspensions: Colloidal phase behavior and rheology of soft spheres. J Chem Phys. 1999;111:1705-1711. doi: 10.1063/1.479430

 

  1. Plamper FA, Richtering W. Functional microgels and microgel systems. Acc Chem Res. 2017;50:131-140. doi: 10.1021/acs.accounts.6b00544

 

  1. Wang Y, Li P, Truong Dinh Tran T, Zhang J, Kong L. Manufacturing techniques and surface engineering of polymer based nanoparticles for targeted drug delivery to cancer. Nanomaterials (Basel). 2016;6(2):26. doi: 10.3390/nano6020026

 

  1. Ribovski L, de Jong E, Mergel O, et al. Low nanogel stiffness favors nanogel transcytosis across an in vitro blood-brain barrier. Nanomedicine. 2021;34:102377. doi: 10.1016/j.nano.2020.102377

 

  1. Zhen X, Li Y, Chen Y, Dong P, Liu S, Dong H. Effect of multiple drug resistance on total medical costs among patients with intra-abdominal infections in China. PLoS One. 2018;13(3):e0193977. doi: 10.1371/journal.pone.0193977

 

  1. He Q, Liu J, Liang J, et al. Towards improvements for penetrating the blood-brain barrier-recent progress from a material and pharmaceutical perspective. Cells. 2018;7(4):24. doi: 10.3390/cells7040024

 

  1. Nahas E, Fakhry G, Shereen M, et al. Effect of various penetration enhancers on diclofenac sodium. Asian J Pharm. 2011;5: 33-39.

 

  1. Barry BW. Novel mechanisms and devices to enable successful transdermal drug delivery. Eur J Pharm Sci. 2001;14(2): 101-114. doi: 10.1016/s0928-0987(01)00167-1

 

  1. Neamtu I, Rusu AG, Diaconu A, Nita LE, Chiriac AP. Basic concepts and recent advances in nanogels as carriers for medical applications. Drug Deliv. 2017;24(1):539-557. doi: 10.1080/10717544.2016.1276232

 

  1. Jensen LB, Griger J, Naeye B, et al. Comparison of polymeric siRNA nanocarriers in a murine LPS-activated macrophage cell line: Gene silencing, toxicity, and off-target gene expression. Pharm Res. 2012;29(3):669-682. doi: 10.1007/s11095-011-0626-7

 

  1. Piddock LJ. The crisis of no new antibiotics-what is the way forward? Lancet Infect Dis. 2012;12:249-253. doi: 10.1016/S1473-3099(11)70320-5

 

  1. Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev. 2010;74:417-433.doi: 10.1128/MMBR.00016-10

 

  1. Tornimbene B, Eremin S, Escher M, et al. WHO global antimicrobial resistance surveillance system early implementation 2016–2017. Lancet Infect Dis. 2018;18: 241-242. doi: 10.1016/S1473-3099(18)30060-4

 

  1. Metz M, Shlaes DM. Eight more ways to deal with antibiotic resistance. Antimicrob Agents Chemother. 2014;58:4253-4256. doi: 10.1128/AAC.02623-14

 

  1. Laxminarayan R, Duse A, Wattal C, et al. Antibiotic resistance-the need for global solutions. Lancet Infect Dis. 2013;13: 1057-1098. doi: 10.1016/S1473-3099(13)70318-9

 

  1. Aslam B, Wang W, Arshad MI, et al. Antibiotic resistance: A rundown of a global crisis. Infect Drug Resist. 2018;11: 1645-1658. doi: 10.2147/IDR.S173867

 

  1. Kirtane AR, Verma M, Karandikar P, Furin J, Langer R, Traverso G. Nanotechnology approaches for global infectious diseases. Nat Nanotechnol. 2021;16:369-384. doi: 10.1038/s41565-021-00866-8

 

  1. Lee J, Ryoo N, Han H, et al. Anti-VEGF polysiRNA polyplex for the treatment of choroidal neovascularization. Mol Pharm. 2016;13(6):1988-1995. doi: 10.1021/acs.molpharmaceut.6b00148

 

  1. Vinogradov SV. Colloidal microgels in drug delivery applications. Curr Pharm Des. 2006;12(36):4703-4712. doi: 10.2174/138161206779026254

 

  1. McCarthy KJ, Wassenhove-McCarthy DJ. The glomerular basement membrane as a model system to study the bioactivity of heparan sulfate glycosaminoglycans. Microsc Microanal. 2012;18(1):3-21. doi: 10.1017/S1431927611012682

 

  1. Fang J, Nakamura H, Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev. 2011;63(3):136-151. doi: 10.1016/j.addr.2010.04.009

 

  1. Barani M, Mukhtar M, Rahdar A, et al. Recent advances in nanotechnology-based drug delivery systems for the treatment of microbial infections. Molecules. 2021;26(14):3988.

 

  1. Zhao X, Zhao F, Li Y, Liu Z. Antibiotic-free antibacterial strategies enabled by nanomaterials: A review. Adv Mater. 2021;33(7):2005606.
Share
Back to top
Journal of Biological Methods, Electronic ISSN: 2326-9901 Print ISSN: TBA, Published by POL Scientific